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We describe, by means of asymptotic methods and direct numerical simulation, the
structure of singularities developing at the interface between two perfect, inviscid and
irrotational fluids of different densities ρ1 and ρ2 and under the action of gravity. When
the lighter fluid is on top of the heavier fluid, one encounters the water-wave problem
for fluids of different densities. In the limit when the density of the lighter fluid is zero,
one encounters the classical water-wave problem. Analogously, when the heavier fluid
is on top of the lighter fluid, one encounters the Rayleigh–Taylor problem for fluids
of different densities, with this being the case when one of the densities is zero for the
classical Rayleigh–Taylor problem. We will show that both water-wave and Rayleigh–
Taylor problems develop singularities of the Moore-type (singularities in the curvature)
when both fluid densities are non-zero. For the classical water-wave problem, we
propose and provide evidence of the development of a singularity in the form of a
logarithmic spiral, and for the classical Rayleigh–Taylor problem no singularities were
found. The regularizing effects of surface tension are also discussed, and estimates of
the size and wavelength of the capillary waves, bubbles or blobs that are produced are
provided.

1. Introduction
One of the most important problems in hydrodynamics involves the evolution

of the interface between two infinite, perfect, incompressible and irrotational fluids
in two dimensions and under the action of gravity (see figure 1). Throughout the
paper, the following will be assumed: gravity is directed in the downward vertical
direction; the density of the lower fluid is ρ1; the density of the upper fluid is ρ2.
Surface tension force, with surface tension coefficient σ , may also enter into the
problem by balancing the jump in pressure across the interface. A simple solution
to the problem corresponds to a planar interface with the lower fluid moving at a
constant horizontal velocity U1 and the upper fluid moving with constant horizontal
velocity U2. If we perturb the planar interface y = 0 with

η(x, t) = εei(kx−ωt), (1.1)
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Figure 1. Graphical representation of the physical problem.

then it is straightforward to compute the following dispersion relation (see
Chandrasekhar 1981, chapters X and XI):

ω =
ρ1U1 + ρ2U2

ρ1 + ρ2

|k| ±
[
ρ1 − ρ2

ρ1 + ρ2

g |k| +
σ

ρ1 + ρ2

|k|3 − ρ1ρ2(U2 − U1)
2

(ρ1 + ρ2)2
k2

]1/2

. (1.2)

If

� =
ρ1 − ρ2

ρ1 + ρ2

g |k| +
σ

ρ1 + ρ2

|k|3 − ρ1ρ2(U2 − U1)
2

(ρ1 + ρ2)2
k2 < 0, (1.3)

then the small perturbation η(x, t) may grow exponentially; i.e. the flat interface
becomes unstable. The problem is then to describe the subsequent nonlinear evolution.
This problem receives various names depending on the relative densities and velocities
of both fluids. By introducing typical length scale Lc, time scale Tc and velocity
U = Lc/Tc the dimensionless parameters

Aρ =
ρ1 − ρ2

ρ1 + ρ2

, We =
ρ1 + ρ2

2σ
U 2

c Lc, F r =
Uc√
gLc

, (1.4)

called the Atwood, Weber and Froude numbers, respectively, can be constructed.
Depending on the value of the Atwood number, the particular cases are named as
follows:

Aρ = −1, U1 = U2 ⇒ Rayleigh–Taylor instability;

Aρ = 0, U1 �= U2 ⇒ Helmholtz–Kelvin instability, vortex sheets;

Aρ = 1, U1 �= U2 ⇒ Thomson instability, water-wave problem.

These cases are named after the scientists that most contributed to their analysis or
the physical situation modelled. One can also study water waves when ρ2 > 0 and
0 <Aρ < 1 and the Rayleigh–Taylor instability when ρ1 > 0 and −1 <Aρ < 0. We refer
to Aρ = 1 and Aρ = −1 as the classical water-wave and Rayleigh–Taylor problems,
respectively. These problems can be considered both with and without surface tension,
that is for We < ∞ and We = ∞.
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The particular case of the water-wave problem has a special historical importance.
Since the early contributions of Laplace, Poisson and Cauchy in the first half of the
19th century aiming to describe the shape and propagation properties of travelling
waves, numerous scientists such as Helmholtz, Russell, Stokes, Airy, Thomson and
Rayleigh contributed in the second half of the century to the description of various
types of waves (progressive, standing, solitary). Thomson showed that the surface of
water, under the action of wind, becomes unstable no matter how small its velocity
is. If surface tension is included, then a wind-velocity threshold for instability is set.
At the same time, Helmholtz initiated the study of vortex sheets with the motivation
of understanding the air flow in organ pipes in the mind. Later, Rayleigh studied
the instability induced in a fluid with varying density, being the limit of a heavy
fluid over a lighter one, a particular case, as well as the instabilities at the interface
between two fluids of equal density. We recommend the book by Darrigol (2006)
for a thorough historical account. In the 20th century, new mathematical tools were
developed in order to study these problems. In the two-dimensional case, complex
variable techniques are particularly powerful. The fluids being incompressible and
irrotational, the velocity in each fluid can be written as the gradient of a harmonic
function. Then it can be written in terms of Cauchy integrals along the interface
(we will discuss this in more detail in the next section). In this way, the vortex-sheet
problem can be reduced to solving an integro-differential equation, called the Birkhoff–
Rott equation, for the complex z(α, t) = x(α, t) + iy(α, t), where (x, y) is the moving
interface parameterized by α at time t . Similar equations have been deduced for
water waves and the evolution of interfaces for general Aρ (Baker, Meiron & Orszag
1982; Dyachenko et al. 1996). Being of particular importance these formulations are
specially suited for numerical implementation (e.g. Hou, Lowengrub & Shelley 1994;
Beale, Hou & Lowengrub 1996). Formulations based on complex variable techniques
are also part of mathematical proofs of well-posedness for these equations. It turns
out that the water-wave problem allows solutions for any sufficiently smooth initial
data, at least for a short period of time (Wu 1997; Ambrose & Masmoudi 2005), and
has solutions for very long times if the initial data are a small perturbation of a flat
interface (Wu 2009).

Of special interest is the mathematical description of fluid patterns that develop
during the evolution. In the vortex-sheet problem, the interface may evolve into
multiple spirals. In the water-wave problem, waves of multiple types (travelling,
solitary, standing) and the phenomenon of wave-breaking (Banner & Peregrine
1993; Sirviente & Song 2004) may take place. In the Rayleigh–Taylor problem,
fingers of the heavy fluid entrain the lighter fluid and may destabilize, giving
rise to spiral-type patterns. Rayleigh–Taylor instability also occurs when an
accelerated fluid displaces another fluid (Taylor 1950), as is the case in stellar
explosions.

For these problems, and in the absence of surface tension, it is a well-known fact that
singularities may develop in finite time. Since the original work of Moore (1979), the
vortex-sheet problem is known to develop curvature singularities (Caflisch & Orellana
1989), while the question whether the water-wave problem develops singularities
remains open (see, for instance, the review by Craig & Wayne 2007). The Rayleigh–
Taylor problem is known not to develop singularities for certain initial data and there
is evidence that no singularities develop in general (Clavin, Duchemin & Josserand
2005). Nevertheless, if the density of the lower fluid is non-zero, Rayleigh–Taylor
instabilities may still give rise to singularities, as calculations based on a localized
approximation (for the singular integrals that appear in the equations) indicate
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Figure 2. Evolution of (a) a vortex sheet, (b) a water wave and (c) an interface undergoing
Rayleigh–Taylor instability. The interface at various equally spaced times is represented in
each case. Dotted lines correspond to the initial interface profiles. The curves were obtained
using the numerical method of this paper.

(Baker, Caflisch & Siegel 1993). See figure 2 for a representation of the solutions of
the vortex-sheet, water-wave and Rayleigh–Taylor problems, without surface tension,
at various times, based on the numerical results obtained with the method in this
paper.

The addition of surface tension or viscous effects may regularize the singularities,
but the behaviour of the regularized solution may still be determined by the
mathematical structure of the singularities. This is the case, for instance, of the
vortex-sheet problem regularized by surface tension (de la Hoz, Fontelos & Vega
2008): Moore singularity is regularized and a spiral pattern starts to emerge. We will
see in this paper that the singularities that appear in water waves, in the form of two
armed logarithmic spirals, are regularized by surface tension; characteristic capillary
wave patterns emerge and a bubble is entrained into the fluid.

For the classical Rayleigh–Taylor instability, Aρ = −1, the addition of surface
tension smoothes the tip of the spike of heavy fluid entraining the zero-density fluid.
The result is a small blob at the tip of the spike. In the range −1 < Aρ < 0, Moore-
type singularities appear in the absence of surface tension. When surface tension is
included, Moore singularities are regularized, but filaments of heavy fluid emerge
from them and entrain the lighter fluid (see figure 3), which enhances the mixing
of both fluids. This fact serves to stress the crucial role that Moore singularities
play.

The paper is organized as follows. In § 2, we describe the mathematical formulation
of the problem as a geometric evolution equation for the interface. In § 3, Moore
singularities in the range −1 <Aρ < 1 are described. Section 4 is devoted to the water-
wave problem, Aρ = 1, and we describe singularities that develop in a self-similar
manner and give rise to a logarithmic spiral at the crest of the waves. Finally, § 5
discusses the regularizing effects of surface tension for the water-wave and Rayleigh–
Taylor problems and the patterns that emerge in the form of capillary waves, bubbles
and blobs.
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Figure 3. (a) Interface profile for Aρ = −0.45 and We = ∞ with the development of a Moore
curvature singularity at t = 0.36. (b) Interface profile for Aρ = −0.45 and We = ∞ at time
t =0.41 (continuous line) with the development of fingers at the point where Moore singularities
were located for We = ∞. Profile at time t =0.48 (dotted line) when filamentary structures have
grown as well as secondary fingers.

2. Mathematical formulations as geometric evolution and θ − L equations
In this section, we deduce the mathematical description used in the paper. It is

similar to deductions in various publications (cf. Baker et al. 1982; Hou et al. 1994;
Ambrose & Masmoudi 2005) where systems of integro-differential equations restricted
to the interface are found, but we will conclude with a system of equations written
in terms of arclength, which is a geometrically intrinsic parameterization that will be
useful for our analysis.

2.1. Model formulation

We are considering incompressible, irrotational fluids and, therefore, the velocity field
w satisfies

∇ · w = 0 , ∇ × w = 0, (2.1)

which can be written as

w = ∇ϕ = ∇⊥ψ, (2.2)

(with ∇⊥ =(∂y, −∂x)) where ϕ and ψ (called the potential and stream functions,
respectively) are both harmonic:

�ϕ = �ψ = 0. (2.3)

If we call ϕi , i = 1, 2, the potential ϕ restricted to the regions occupied by fluids 1 and
2, respectively, then Bernoulli equations will hold at both sides of the interface:

ϕi,t +
1

2
|∇ϕi |2 +

pi

ρi

+ gy = 0, (2.4)

(where we use the notation ϕi,t for the derivative of ϕi with respect to t), as well as
jump conditions for the pressure:

p1 − p2 = σκ, (2.5)

where σ is the surface tension coefficient and κ is the curvature of the interface. In the
absence of surface tension, the condition is p1 =p2. Finally, a kinematic condition for
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the interface has to be imposed: the interface will move following the velocity field.
Only the normal component of the velocity will change the geometry of the interface
(the tangential component only redistributes the particles along the interface) and,
hence

vN = w · n (2.6)

needs to be imposed, where n is the vector normal to the interface (and t is the tangent)
and vN is the velocity with which the interface moves in the normal direction.

A new formulation of the problem can be provided by using complex variables
techniques. We write the point in the xy plane as complex numbers z = x + iy and
introduce the complex potential

Φ = ϕ + iψ, (2.7)

so that the two components of the velocity (u, v) are given by

u − iv =

(
dΦ

dz

)
.

Since Φ(z) is analytic at both sides of the interface C and decays at infinity, it can be
written as a Cauchy integral involving an unknown function μ defined on C:

Φ(z) =
1

2πi

∫
C

μ(z′, t) dz′

z − z′ . (2.8)

Then
dΦ

dz
=

1

2πi

∫
C

μz′(z′, t) dz′

z − z′ =
1

2πi

∫
C

γ (α′, t) dα′

z − z(α′, t)
, (2.9)

where

γ (α, t) = μα(z(α, t), t). (2.10)

Formula (2.9) defines a velocity at the interface that is the principal value of (2.9) plus
a tangential component of velocity that has a jump across the interface (see Baker
et al. 1982). Since the tangential component of velocity does not change the geometry
of the interface, we use its arbitrary values, and we define the complex velocity w by

w∗ =
1

2πi
PV

∫
C

γ (α′, t) dα′

z − z(α′, t)
, (2.11)

just as in Baker et al. (1982), where w∗ = Rew−i Imw denotes the complex conjugate
of w.

Let us define the velocity and position vectors from the real and imaginary parts
of the complex numbers w and z:

w = (Rew, Imw), (2.12)

z = (Re z, Im z) = (x, y). (2.13)

We choose as parameter α the Lagrangian variable, which is a label attached to
the fluid particles initially and is constant during their motion. In the absence of
the surface tension, Baker et al. (1982) computed from Bernoulli equations (2.4) the
evolution equation for γ:

∂γ

∂t
=

∂

∂α

(
λ

2

γ 2

s2
α

)
− 2Aρ

[
Re

(
zα

∂w∗

∂t

)
− λγ

2
Re

(
wα

zα

)
+

1

8

∂

∂α

(
γ 2

s2
α

)
+ gyα

]
,

(2.14)
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where s is the arclength parameter and λ is an arbitrary function associated with the
arbitrariness of the tangential velocity at the interface through the relation

T = w · t+
λγ

2sα

, (2.15)

where T is the tangential velocity of the points of the interface. The points of the
interface then move obeying the equation

∂z(α, t)

∂t
= w(α, t) +

λγ (α, t)

2z∗
α(α, t)

. (2.16)

We now introduce the tangent vector zs and write

zs =
zα

sα

= eiθ , (2.17)

where θ is the inclination angle of the vector tangent to the interface with respect to
the x axis, and compute

zαt = Uαn + Tα t − Uθα t + T θαn,

zαt = sαθt n + sαt t,

where U =w · n. Hence.

θt =
1

sα

(Uα + T θα) , (2.18)

sαt = Tα − Uθα, (2.19)

and we conclude the system of equations with

∂γ

∂t
=

∂

∂α

(
λ

2

γ 2

s2
α

)
− 2Aρ

[
sαwt · t − λγ

2sα

wα · t +
1

8

∂

∂α

(
γ 2

s2
α

)
+ gyα

]
, (2.20)

∂θ

∂t
=

1

sα

(
wα · n +

λγ

2sα

θα

)
, (2.21)

∂sα

∂t
=

(
λγ

2sα

)
α

+ wα · t. (2.22)

The case σ > 0 in (2.5) leads to an additional term (2σ/(ρ1 + ρ2))κα at the right-
hand side of (2.20). Introducing typical length scale Lc, time scale Tc and velocity
Uc = Lc/Tc, rescaling x → Lcx, t → Tct , w → Ucw, Γ → UcΓ and introducing the
dimensionless quantities We and Fr (see (1.4)), we arrive from (2.20) at

∂γ

∂t
=

∂

∂α

(
λ

2

γ 2

s2
α

)
− 2Aρ

[
sαwt · t − λγ

2sα

wα · t +
1

8

∂

∂α

(
γ 2

s2
α

)
+

1

Fr2
yα

]
, (2.23)

while (2.21) and (2.22) remain unaltered. If surface tension is included in the problem,
then an additional term κα/We needs to be added at the right-hand side of (2.23).

The system (2.21)–(2.23) may be further simplified with the introduction of

Γ =
γ

sα

, (2.24)

l = sα, (2.25)
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that lead to

∂Γ

∂t
= −Γ ws · t +

1

2
λΓ Γs − 2Aρ

[
wt · t−λΓ

2
ws · t+

1

4
Γ Γs +

1

Fr2
ys

]
, (2.26)

∂θ

∂t
= ws · n +

λΓ

2
θs, (2.27)

∂l

∂t
= l

(
λΓ

2

)
s

+ lws · t. (2.28)

The derivatives with respect to time are at constant Lagrangian parameter α. We take
time derivatives at a constant value of s, then the relation

f (α, t) = f (s(α, t), t) (2.29)

has to be used and the time derivatives changed accordingly,

∂f

∂t
→ ∂f

∂t
+ st

∂f

∂s
, (2.30)

so that by introducing

D

Dt
=

∂

∂t
+

(
st − 1

2
λΓ

)
∂

∂s
, (2.31)

we can write (2.26) and (2.27) as

DΓ

Dt
= −Γ ws · t − 2Aρ

[
Dw

Dt
· t+

1

4
Γ Γs +

1

Fr2
ys

]
, (2.32)

Dθ

Dt
= ws · n. (2.33)

Note that, introducing μ ≡ st − (λΓ/2), (2.28) takes the form

μs = ws · t. (2.34)

We will see below that for the singularities studied in this paper, the terms involving
μ are small in comparison with the other terms in the equations. Hence, we arrive at
the following geometric evolution equations:

∂Γ

∂t
+ μΓs = −Γ ws · t − 2Aρ

[(
∂w

∂t
+ μws

)
· t+

1

4
Γ Γs +

1

Fr2
ys

]
, (2.35)

∂θ

∂t
+ μθs = ws · n, (2.36)

μs = ws · t, (2.37)

where

w∗(s, t) =
1

2πi
PV

∫
Γ (s ′, t)ds ′

z(s, t) − z(s ′, t)
, (2.38)

and z can be deduced from θ through the relation

zs = eiθ . (2.39)

Equivalent to (2.36) and (2.39), one can write the equation

∂ z
∂t

= w. (2.40)
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An advantage of the system (2.35)–(2.39) is that it is written in terms of the intrinsic
geometric variable s, does not depend on a particular parameterization and carries no
ambiguity from a particular choice of tangential velocity. Although the formulation
(2.35)–(2.39) is very convenient for analysis, as we will see, it is not simple to implement
numerically. A more convenient formulation for numerical purposes is the so-called
θ − L formulation (see Hou et al. 1994). If we consider a periodic interface and
introduce L(t) as the length of one period, then the variable α defined through

s = L(t)α

will take values between 0 and 1. Note that sαt = Lt and (λγ /(2sα)) = T − w · t so that
(2.22) becomes

Lt = Tα − Uθα, (2.41)

and (2.23) and (2.21) become

∂γ

∂t
=

(
(T − w · t)

L
γ

)
α

− 2Aρ

(
Lwt · t − (T − w · t)wα · t +

1

4L2
γ γα +

1

Fr2
yα

)
,

(2.42)

∂θ

∂t
=

1

L
(wα · n + (T − w · t)θα) . (2.43)

By periodicity of T , we can compute by integration of (2.41)

Lt (t) = −
∫ 1

0

Uθα′dα′, (2.44)

and find T (up to an arbitrary constant) from integration in (2.41).

2.2. Numerical method

Below, we briefly comment on the numerical method used. Equation (2.42) is an
integro-differential equation, since it contains wt at the right-hand side, which is an
integral operator involving γt . This causes no concern when Aρ = 0, but needs some
rewriting for Aρ �= 0. Recalling that

w∗ =
1

2πi

∫ +∞

−∞

γ (α′, t)

z(α, t) − z(α′, t)
dα′, (2.45)

we can compute w∗
t and decompose it, after integration by parts and use of periodic

boundary conditions, in three parts:

w∗
t =

1

2πi

∫ +∞

−∞

γt (α
′)

z(α) − z(α′)
dα′ − 1

2πi

∫ +∞

−∞

γ (α′)(zt (α) − zt (α
′))

(z(α) − z(α′))2
dα′

=
1

2πi

∫ +∞

−∞

γt (α
′)

z(α) − z(α′)
dα′ − zt (α)

2πi

∫ +∞

−∞

γ (α′)

(z(α) − z(α′))2
dα′

+
1

2πi

∫ +∞

−∞

γ (α′)zt (α
′)

(z(α) − z(α′))2
dα′
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=
1

2πi

∫ +∞

−∞

γt (α
′)

z(α) − z(α′)
dα′ − zt (α)

2πi

∫ +∞

−∞

γ (α′)

zα(α′)

zα(α
′)

(z(α) − z(α′))2
dα′

+
1

2πi

∫ +∞

−∞

γ (α′)zt (α
′)

zα(α′)

zα(α
′)

(z(α) − z(α′))2
dα′

=
1

2πi

∫ +∞

−∞

γt (α
′)

z(α) − z(α′)
dα′ +

zt (α)

2πi

∫ +∞

−∞

(
γ (α′)

zα(α′)

)′
dα′

z(α) − z(α′)

− 1

2πi

∫ +∞

−∞

(
γ (α′)zt (α

′)

zα(α′)

)′
dα′

z(α) − z(α′)
≡ I + II + III , (2.46)

where the t dependence and PV notation for the principal value integral have been
omitted for the sake of simplicity. Note that zt can be explicitly computed from z and
γ through

zt = Un + T t =⇒ zt =
1

L
(iUzα + T zα), (2.47)

since U and T involve integral operators depending on z and γ and their space
derivatives. It is then immediate to compute II and III in (2.46). The term I involves
γt, which is also at the left-hand side of (2.42). Hence, using that wt · t = Re(w∗

t zα)/L,
we can transform (2.42) into

E(γt ) ≡ γt + 2Aρ Re

(
zα(α)

2πi

∫ +∞

−∞

γt (α
′)

z(α) − z(α′)
dα′

)
= (Terms involving z, γ and their space derivatives), (2.48)

where the integral term at the left-hand side of (2.48) can be replaced, for periodic γ

and z (with period 1, which is used in this paper), by an integral over one period:

1

2πi

∫ +∞

−∞

γt (α
′)

z(α) − z(α′)
dα′ =

1

2i

∫ 1

0

γt (α
′) cot(π(z(α) − z(α′)))dα′. (2.49)

Furthermore, if we view γt as a column vector of points γt (αi), it is easy to represent
numerically the linear operator E as an (N × N) matrix:

E(γt ) ≡ E · γt . (2.50)

Therefore, at a given instant t , the problem of finding γt is reduced to solving a
system of linear equations. We used an iterational Jacobi–Gauss–Seidel method, with
a tolerance in L∞-norm equal to 10−12.

Once we have obtained γt , it is straightforward to calculate the whole right-hand
side of (2.42). The remaining implementational details are the same as described by
de la Hoz et al. (2008), which were essentially the same as those originally introduced
by Hou, Lowengrub and Shelley (1994, 1997).

The numerical method also allows surface tension since it only adds κα/We into
(2.42). For the numerical experiments performed in the next sections, we took as
initial data a slightly perturbed interface

z(α, 0) = α + 0.1 cos(2πα)i, (2.51)

with a vortex-sheet strength γ :

γ (α, 0) = −1 + 0.1 sin(2πα), (2.52)



Singularities in water waves and the Rayleigh–Taylor problem 221

N ‖θ (N ) − θ (N = 4096)‖∞ ‖γ (N ) − γ (N = 4096)‖∞

64 1.209512701416660 × 10−2 2.315768139154106 × 10−2

128 1.000863602305557 × 10−3 1.359720107195095 × 10−3

256 3.580713179074380 × 10−6 1.038646570994395 × 10−5

512 1.210555822250825 × 10−10 2.279498811930125 × 10−10

1024 2.129962872743363 × 10−13 4.400924069614121 × 10−13

2048 1.963969473162130 × 10−10 2.211419936060111 × 10−10

Table 1. Errors of θ and γ at t = 0.273 relative to N = 4096 for smaller numbers of N .
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Figure 4. Convergence of the evolution variables θ and γ as We → ∞ to θ
and γ of the limiting case We = ∞.

for all numerical experiments except for those with Aρ = −1 (classical Rayleigh–
Taylor instability), where we take γ (α, 0) = 0. The value of 1/Fr2 is 10 for all
numerical computations presented in the following sections.

To validate our numerical method, we have performed the following convergence
tests. They are related to the experiment shown in figure 12, with initial data (2.51)–
(2.52), at t = 0.273.

Given Aρ =1, We = ∞, we have executed the codes for different N , taking �t = 10−4;
obviously, �s =1/N . In table 1, we have taken as a reference the result for N = 4096
at t = 0.273, showing that the errors of the evolution variables θ and γ quickly decay
in L∞-norm, as N is increased, having spectral accuracy in space.

In § 5, the effects of finite surface tension are studied. Since the addition of such
effects might, in principle, generate capillary waves and make the limit We → ∞
singular, we have performed a convergence test to show that this is not the case and
such a limit is well defined and resolved by our numerical method. In figure 12, a
comparison is made between We = 700 and We = ∞, at t =0.273, suggesting that,
as We → ∞, the interface profiles and vortex strength converge to those of the
limiting case We = ∞. As evidence, we have executed the codes with N = 1024
for a large set of We ranging from We = 500 to We = 106, comparing for each
We the evolution variables θ and γ with those of the We = ∞ case in L∞ norm.
Power-law convergence, at a rate  We−1, to the limiting case is evident from
figure 4.
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3. Moore singularities for −1 < Aρ < 1

In this section, we describe the structure of the Moore singularities that develop in
finite time. Moore singularities are such that both the curvature θs and the derivatives
of Γ blow up in finite time. Nevertheless, the interface itself has a continuous tangent
vector so that we can consider the interface as flat locally near the point at which
Moore singularity develops. We can then approximate (see de la Hoz et al. 2008,
where the same simplification was used and a mathematical estimate of the smallness
of the remainder is provided)

w∗(s, t) =
1

2πi
PV

∫
Γ (s ′, t)ds ′

z(s, t) − z(s ′, t)
 1

2πi

1

zs(s, t)
PV

∫
Γ (s ′, t)ds ′

s − s ′ , (3.1)

and then

w(s, t)  1

2
(HΓ )n, (3.2)

where

HΓ =
1

π
PV

∫
Γ (s ′, t)ds ′

s − s ′

denotes the Hilbert transform of Γ .
Analogously, after integration by parts using periodicity of Γ and z,

w∗
s (s, t) = − 1

2πi
zs(s, t)PV

∫
Γ (s ′, t)ds ′

(z(s, t) − z(s ′, t))2

= − 1

2πi
zs(s, t)PV

∫
(Γ (s ′, t)/zs′(s ′, t))s′ds ′

z(s, t) − z(s ′, t)

 − 1

2πi
PV

∫
(Γ (s ′, t)/zs′(s ′, t))s′ds ′

s − s ′ ,

ws(s, t)  −1

2
H (Γ θs)t +

1

2
(HΓs)n,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(3.3)

and

w∗
t (s, t) = − 1

2πi
PV

∫
(zt (s, t) − zt (s

′, t))Γ (s ′, t)ds ′

(z(s, t) − z(s ′, t))2

+
1

2πi
PV

∫
Γt (s

′, t)ds ′

z(s, t) − z(s ′, t)

 − 1

2πi
PV

∫
zst (s, t)Γ (s ′, t)ds ′

zs(s, t)zs(s ′, t)(s − s ′)
+

1

2πi
PV

∫
Γt (s

′, t)ds ′

zs(s, t)(s − s ′)
,

wt (s, t)  −1

2
H (Γ θt )t +

1

2
(HΓt )n.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(3.4)

Inserting the approximations (3.2)–(3.4) into (2.35)–(2.37) and neglecting gravity (that
represents a subdominant contribution with respect to other terms in the equations
that become singular), we get

Γt + μΓs =
1

2
Γ H (Γ θs) − 2Aρ

[
−1

2
H (Γ θt ) − 1

2
μH (Γ θs)+

1

4
Γ Γs

]
, (3.5)

θt + μθs =
1

2
(HΓs), (3.6)

μs = −1

2
H (Γ θs), (3.7)
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and writing

Γ = Γ0 + Γ̃ , θ = θ0 + θ̃ , (3.8)

with |Γ̃ |, |θ̃ | � 1 we obtain after integration of the third equation μ = −(Γ0H (θ̃ ))/2
together with the linearized system

Γ̃t =
1

2
Γ 2

0 Hθ̃s − 2Aρ

[
−1

2
Γ0(Hθ̃ )t+

1

4
Γ0Γ̃ s

]
, (3.9)

θ̃t =
1

2
(HΓ̃s). (3.10)

Using now the properties

H (Hf ) = −f , (Hf )s = Hfs (3.11)

of Hilbert transform in (3.10), we get

(Hθ̃ )t = −1

2
Γ̃s, (3.12)

and substitution in (3.9) leads to

Γ̃t =
1

2
Γ 2

0 Hθ̃s − AρΓ0Γ̃s, (3.13)

which can be combined with (3.12) into the system(
Γ̃

H θ̃

)
t

=

(
−AρΓ0

1
2
Γ 2

0

− 1
2

0

) (
Γ̃

H θ̃

)
s

. (3.14)

The eigenvalues of the above matrix are

Λ± =
AρΓ0

2
±

√
1 − A2

ρ

Γ0

2
i, (3.15)

which are complex for |Aρ | < 1. This characterizes the system (3.14) as elliptic. Before
entering into a more detailed analysis, we remark that the two eigenvalues Λ± are
real and identical for Aρ = ± 1 and the system (3.14) degenerates into the first-order
hyperbolic equation[

∂

∂t
+

1

2
Γ0

∂

∂s

]
(Γ̃ − Γ0Hθ̃ )t = 0, if Aρ = 1, (3.16)[

∂

∂t
+

1

2
Γ0

∂

∂s

]
(Γ̃ + Γ0Hθ̃ )t = 0, if Aρ = −1, (3.17)

so that Moore singularities do not take place in these situations and we will have to
look for different kind of singularities in the next sections.

Returning to (3.14) for |Aρ | < 1, elementary calculus shows that by introducing

s ′ =
s − 1

2
AρΓ0t

1
2
Γ0

√
1 − A2

ρ

, (3.18)

f = Γ0

√
1 − A2

ρΓ̃ , (3.19)

g = AρΓ0Γ̃ + Hθ̃, (3.20)
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we get (
f

g

)
t

=

(
0 −1
1 0

) (
f

g

)
s′

, (3.21)

so that

�(s′,t)f = �(s′,t)g = 0, (3.22)

where

�(s′,t) ≡ ∂2

∂s ′2 +
∂2

∂t2
(3.23)

is the Laplace operator.
By taking linear combinations of f and g and Hilbert transform (that commutes

with derivatives), we find �(s′,t)θ̃ = 0. Taking s derivative (that commutes with s ′ and

t derivatives), we get, for κ = θ̃s ,

�(s′,t)κ = 0. (3.24)

Similar to the case of vortex sheets, Aρ = 0, which has been thoroughly studied (see
e.g. Moore 1979; Caflisch & Orellana 1989), we can find singular solutions to the
curvature in (3.24) in the form

κ(s ′, t) =
1

rδ
sin(δθ + μ), (3.25)

where (r, θ) are the polar coordinates defined as r =
√

(t − t0)2 + (s ′ − s ′
0)

2,
θ = arctan ((s ′ − s ′

0)/(t − t0)). Note that (s ′
0, t0) are the space–time of formation of

the singularity, 0 <δ < 1, 0 <μ< 2π. Formula (3.25) allows a representation in terms
of the self-similar variable ξ = ((s ′ − s ′

0)/(t − t0)) as

κ(s ′, t) =
1

(t0 − t)δ
1

(1 + ξ 2)δ/2
sin(δ arctan ξ + μ) ≡ 1

(t0 − t)δ
h(ξ ). (3.26)

For vortex sheets, Aρ = 0, Moore singularity is known to be such that δ = 1/2, μ =0.
In fact, the local form of the singularity (3.26) coincides with explicit solutions found
in Cowley, Baker & Tanveer (1999), who analysed singularities of the problem in
the complex spatial plane. We will show below, from numerical simulation, that δ

and μ in the Moore singularity that develops at the interface depend on Aρ . We
have simulated the evolution of the interface for Aρ between 0 and 1 at intervals of
0.05. For all Aρ < 1, we find that the curvature profiles adjust almost perfectly to
the functional form (3.26) sufficiently close to the singularity time t0 for appropriate
choices of δ and μ. In figure 5, we show, for Aρ = 0.45, the curvature for various times
close to t0 and the same profiles rescaled with the maximum of the absolute value of
the curvature (denoted by |κmax |) as a function of the rescaled variable ξ . As we can
see, they converge to a certain theoretical profile h(ξ ) corresponding to certain values
of δ and μ. Note that δ  0.97 and μ �= 0 (which is clear from the asymmetry of h(ξ )),
which are values very different from those for vortex sheets. The value of δ may be
obtained from the slope of the curve log |κmax | as a function of log(t0 − t). As we can
see from figure 6, such a slope varies for varying Aρ . We found that δ increases from
1/2 to almost 1 for Aρ from zero to approximately 1/2, and then decreases and returns
to values close to 1/2 for Aρ close to 1. The antisymmetry of the self-similar profiles
h(ξ ) decreases with Aρ , going from perfectly antisymmetric for vortex sheets to almost
symmetric profiles for Aρ close to 1. In figure 6, we measure the asymmetry with the
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Figure 6. (a) Logarithmic plot of the maximum curvature versus time for various Aρ .
(b) Dependence of the absolute value of the ratio between the maximum and minimum
curvatures, as t approaches t0, as a function of Aρ .

absolute value of the ratio between the maximum and minimum curvatures. As we can
see, it monotonically decreases to zero. The data for Aρ = 1 are an extrapolation since
the limit Aρ → 1 is singular, and the nature of the singularity is different from the
Moore singularity. This singular character is also evident from the values estimated for
t0 for all the Aρ considered. In all cases with 0 <Aρ < 0.95, we found that t0 is smaller
than 0.3. For Aρ = 1, t0 is well above 0.4 and many of the features of the solution are
different.

Moore singularities also develop for Aρ < 0, that is when the heavier fluid is above
the lighter fluid. We have seen above that close to a singularity the term involving
gravity in (2.35) becomes subdominant with respect to other terms. This implies that
the structure of the singularity should be the same for a given |Aρ | irrespective of the
direction of gravity or, equivalently, the relative position of both fluids and hence the
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Figure 7. Comparison between the self-similar profiles of the curvature for Aρ =0.45 and
Aρ = −0.45. The dashed line shows the mirror image of the Aρ = −0.45 profile.

sign of Aρ . We have verified this numerically, and, in figure 7, we show the rescaled
curvatures close to the time of formation of the singularity for Aρ = ±0.45. We can see,
aside from a change of sign (due to the different relative positions of heavy and light
fluid), the profiles are the same. This implies that both the similarity exponent δ in
(3.26) and the degree of asymmetry of the self-similar profile depend on Aρ . This result
contradicts the explicit singular solutions, based on local approximations of the system,
found by Baker et al. (1993), where the similarity exponent is always 1/2. Nevertheless,
the numerical results of Baker et al. (1993) for the complete system without any
local approximation are not inconsistent with an Aρ dependence of the singularity
mechanism. The approximation of Baker et al. (1993) is based on the assumption
that nonlinear interactions between modes with positive and modes with negative
wavenumbers can be neglected. This leads to nonlinear systems that can be integrated
by means of complex characteristics. The resulting system, when linearized, is
equivalent to ours and, hence, it allows a multiplicity of solutions. It is the nonlinear
terms, obtained under the assumption that certain nonlinear interactions are
negligible, that select a particular generic mechanism. Nevertheless, since the selection
does not occur at higher order (the linear systems with multiple singular solutions),
but occurs because of lower-order nonlinear interactions, it is important to retain all
contributions from the beginning for finding, for a given Aρ , the particular solution
(that is, particular δ and μ) that is selected from the possible solutions in the form
(3.26). Unfortunately, we cannot provide yet a mathematical proof of this statement,
but only strong numerical evidence. A result of Baker et al. (1993) that we also
found is the character of Aρ = ± 1 as singular limits. In the case Aρ = −1 there are
no singularities (also found by Clavin et al. 2005). In the case of Aρ = 1, there are
singularities, but of a different structure and with a singularity time t0 much larger
than any positive Aρ < 1. This case is discussed in § 4.
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4. Self-similar singularities in classical water waves
The classical water-wave problem assumes that only one fluid has a non-zero

density, i.e. Aρ = 1. The equations we have to solve are

DΓ

Dt
= −Γ ws · t − 2

[
Dw

Dt
· t+

1

4
Γ Γs +

1

Fr2
ys

]
, (4.1)

Dθ

Dt
= ws · n. (4.2)

Equation (4.1) may be written more compactly in the form[
∂

∂t
+

(
Γ

2
+ μ

)
∂

∂s

]
Γ + 2

[
∂

∂t
+

(
Γ

2
+ μ

)
∂

∂s

]
w · t = −2

1

Fr2
ys, (4.3)

or, using

w ·
[

∂

∂t
+

(
Γ

2
+ μ

)
∂

∂s

]
t =(w · n)

[
∂

∂t
+

(
Γ

2
+ μ

)
∂

∂s

]
θ,

[
∂

∂t
+

(
Γ

2
+ μ

)
∂

∂s

]
(Γ + 2w · t) = 2(w · n)

[
∂

∂t
+

(
Γ

2
+ μ

)
∂

∂s

]
θ − 2

1

Fr2
ys. (4.4)

The first term on the left-hand side of (4.3) is the convective derivative, with velocity
Γ/2, of Γ and hence analogous to the inviscid Burgers equation. The second involves
a convective derivative of w, which is a singular integral operator of Γ and has,
therefore, the same scaling properties. We introduce then the self-similar variable

ξ =
s

t0 − t
, (4.5)

analogous to the natural similarity variable in Burgers equation, and seek solutions
in the self-similar form

θ(s, t) = δ log(t0 − t) + Θ(ξ ), (4.6)

Γ (s, t) = Γ0 + Ψ (ξ ) , μ = Ω(ξ ). (4.7)

Consequently,

z(s, t) = (x(s, t), y(s, t)) = (t0 − t)1+iδ Z(ξ ) = (t0 − t)1+iδ(X(ξ ), Y (ξ )), (4.8)

w(s, t) = (t0 − t)−iδW(ξ ), (4.9)

t(s, t) = (t0 − t)iδT(ξ ), n(s, t) = (t0 − t)iδN(ξ ). (4.10)

Then (4.3) becomes at leading order (with gravity being subdominant) and after
simplification

Ψξ + 2Wξ · T = 0, (4.11)

to be solved together with

−δ + (ξ + Ω) Θξ = Wξ · N, (4.12)

Ωξ − Wξ · T = 0, (4.13)

the relation

Zξ = eiΘ(ξ ), (4.14)
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and the following definition of the complex rescaled velocity (whose real and imaginary
parts form the components of W(ξ )):

W ∗ =
1

2πi
PV

∫ ∞

0

Ψ (ξ ′)dξ ′

Z(ξ ) − Z(ξ ′)
. (4.15)

Note that from (4.11) and (4.13), it follows Ω = −Ψ/2 and we can write (4.12) as

−δ + (ξ − Ψ/2) Θξ = Wξ · N, (4.16)

so that, if |Ψ | � |ξ | for large values of ξ , one can replace (4.12) by

−δ + ξΘξ = Wξ · N. (4.17)

The homogeneity of (4.11), (4.14), (4.15) and (4.17) suggests the following possible
ansatz for a singular solution (representing the asymptotics, for large values of ξ , of
self-similar solutions):

Θ (ξ ) = δ log |ξ | + β±, (4.18)

Ψ (ξ ) = ν± |ξ |μ± , (4.19)

Z(ξ ) = eiβ±
1

iδ + 1
|ξ |iδ+1

, (4.20)

where the subscript ± indicates two possibly different values for ξ > 0 and ξ < 0.
From (4.18)–(4.20) one gets, for ξ > 0,

W ∗ =
(iδ + 1)e−iβ+

2πi
PV

∫ ∞

0

ν+ξ ′μ+dξ ′

ξ iδ+1 − (ξ ′)iδ+1

+
(iδ + 1)e−iβ+

2πi
PV

∫ ∞

0

ν−ξ ′μ−dξ ′

ξ iδ+1 − e(β−−β+)i(ξ ′)iδ+1

= ξμ±−iδ

[
(iδ + 1)e−iβ+ν+

2πi
PV

∫ ∞

0

ζμ+dζ

1 − ζ iδ+1

+
(iδ + 1)e−iβ+ν−

2πi
PV

∫ ∞

0

ζμ−dζ

1 − e(β−−β+)iζ iδ+1

]
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(4.21)

and, therefore,

Wξ · T = Re
{
W ∗

ξ Zξ

}
= |ξ |μ±−1

Re

{
(μ+ − iδ)(iδ + 1)ν+

2πi
PV

∫ ∞

0

ζμ+dζ

1 − ζ iδ+1

+
(μ− − iδ)(iδ + 1)ν−

2πi
PV

∫ ∞

0

ζμ−dζ

1 − e(β−−β+)iζ iδ+1

}
, (4.22)

Wξ · N = Re
{
iW ∗

ξ Zξ

}
= − |ξ |μ±−1

Im

{
(μ+ − iδ)(iδ + 1)ν+

2πi
PV

∫ ∞

0

ζμ+dζ

1 − ζ iδ+1

+
(μ. − iδ)(iδ + 1)ν−

2πi
PV

∫ ∞

0

ζμ.dζ

1 − e(β−−β+)iζ iδ+1

}
. (4.23)

For ξ < 0, formulae such as (4.22) and (4.23) also hold with β− and β+, as well as ν−
and ν+ switched.

Direct substitution into (4.11) and (4.17) yields equations for the coefficients ν±,
β±,, μ± and δ. The invariance of the system under rotations and rescaling of Ψ

and Θ reduces the number of free parameters to 5. Instead of seeking an extensive
study of the solutions, we will show the existence of, at least, a particular one by
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specifying

μ+ = μ− = μ, ν− = ν+, β− − β+ = π, (4.24)

which leaves two free parameters in the problem: δ and μ. Since∫ ∞

0

ζμdζ

1 − ζ 2(iδ+1)
=

π

2(iδ + 1)
cot

π (μ + 1)

2(iδ + 1)
(4.25)

(4.11) and (4.17) lead to

μ + Re

{
μ − iδ

i
cot

(μ + 1)π

2(iδ + 1)

}
= 0, (4.26)

Im

{
μ − iδ

i
cot

(μ + 1)π

2(iδ + 1)

}
= 0, (4.27)

with solutions that have to be found numerically. One such solution is

δ = −0.298... (4.28)

μ = 0.540.... (4.29)

It is interesting to study the geometry of the solution we have just constructed.
According to (4.8) and (4.20),

z(s, t) = eiβ±
1

iδ + 1
|s|iδ+1

, (4.30)

and, therefore, the polar coordinates are

r = |z| =
1√

δ2 + 1
|s| , (4.31)

ϕ = arg z = β± + δ log |s| − arctan δ, (4.32)

which implies curves

r =
earctan δ

√
δ2 + 1

e(ϕ−β±)/δ, (4.33)

which are simply double-armed logarithmic spirals. Such solutions were found by
Kambe (1989) in the context of vortex sheets, where the equation to solve is simply
the Birkhoff–Rott equation and there is no coupling with any equation for the vortex
sheet strength. Next, we show numerically that the solution to the water-wave problem
approaches one such double-armed spiral in a self-similar manner. Such a possibility
is evidenced in figure 8, where we represent the profile of a breaking wave computed
numerically together with logarithmic spirals. The initial data are given in (2.51) and
(2.52), periodic boundary conditions are assumed and gravity constant is 1/Fr2 = 10.
Our numerical simulation is able to reach the stage of formation of a pointed tip at
the crest of the wave, but not its winding into the logarithmic spiral (with a radius
decreasing exponentially with θ , which poses a huge numerical challenge). In the
inset of figure 8, we show a close-up of the double-armed spiral near the tip. Despite
these numerical limitations, strong asymptotic arguments based on similarity will be
provided below for the formation of spiral patterns.

In figures 9 and 10, we show the curvature κ and vortex strength γ (= Γ sα =
Γ L) for times between 0.419 and 0.459 at intervals of 5 × 10−3 time units. The
tendency of the maximum curvature κmax(t) ≡ maxα |κ | to blow-up is clear from
the figures. In fact, such blow-up occurs at a finite time t0 as we show below. The
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Figure 9. (a) Curvature profiles. (b) The same profiles rescaled with the maximum of the
absolute value of the curvature.

curvature and vortex strength profiles have similarity properties as illustrated in
figures 9(b) and 10(b): by defining

η ≡ κmax(t)(α − α0(t)), (4.34)

we find that the curvature tends to behave as

κ(α, t) = κmax(t)Ξ (η), (4.35)

and the vortex strength as

γ (α, t) = γmax(t) + Ω(η), (4.36)

where γmax(t) ≡ maxα γ . Both γmax(t) and α0(t) are bounded and tend to constants.
The same holds for the length of the interface, L(t), in one period, since it only changes
about 10 % during the whole evolution and tends to some constant L0. The functions
Ξ and Ψ are universal as evidenced by figures 9(b) and 10(b). The requirement that
interface profiles, and hence curvature profiles, remain stationary at a finite α away
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Figure 10. (a) Vortex strength profiles. (b) The same profiles with their maximum subtracted
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from the blow-up point α0 for t close to t0 forces the following asymptotics for
Ξ (η):

Ξ (η) ∼ δ̃±

η
, as |η| → ±∞, (4.37)

or, introducing the similarity variable ξ = κmax(t)(s − s0(t)) = L(t)η,

Ξ (ξ ) ∼ δ±

ξ
, as |ξ | → ±∞. (4.38)

In figure 11(a), we represent the inverse of the rescaled (according to (4.35))
profiles of the curvature together with a straight line of slope 1/0.39. As we can see,
the agreement of the asymptotic for the inverse rescaled profiles and the straight line
is very good. This would imply that the asymptotics (4.38) are verified with

δ+ = δ− = δ  0.39. (4.39)

Note that θs = κ , so that

θ(s, t) = a(t) + Θ(ξ ), (4.40)
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with Θξ (ξ ) = Ξ (ξ ) and

Θ (ξ ) ∼ δ± log |ξ | + β± , as |ξ | → ±∞. (4.41)

The requirement of stationarity of the interface profiles away from the singularity
forces a(t) = −δ log κmax(t) with δ = δ+ = δ−. As discussed above, the asymptotics
(4.41) represent a double-armed logarithmic spiral. The requirement that the two
arms do not intersect also implies δ+ = δ− as seems to be the case from our numerical
experiments.

Analogously, one can write Γ =(γmax + Ω(η))/L(t)  γmax/L0 + Ω(η)/L0 ≡ Γ0 +
Ψ (ξ ). The asymptotics for Ψ (ξ ), in view of figure 10(b), are power laws:

Ψ (ξ ) ∼ ν± |ξ |μ± , as |ξ | → ±∞, (4.42)

where the best match (computed by least squares) for the exponents μ± is

μ−  0.41, μ+  0.04. (4.43)

The asymptotics in (4.41) and (4.42) match with (4.18) and (4.19) for explicit singular
solutions. Hence, our self-similar solution represents the development of a smooth
curve whose tip is winding at smaller and smaller length and time scales to develop
at t0 a non-smooth curve that is a double-armed logarithmic spiral. The final profile
would be, in polar coordinates positioned at the centre of the spirals,

r = A±e(ϕ−β±)/δ, (4.44)

for some amplitudes A±. If we represent ϕ versus log r , then the two spirals (4.44)
transform into straight lines of slope δ. In figure 11(b), we show these straight lines
together with the numerical profiles, for times between 0.419 and 0.459 at intervals
of 10−3 time units, in the same coordinates ϕ and log r .

Our result does not exclude other types of singularities for water waves in contexts
different from a breaking wave. This is the case, for instance, of progressive waves
of extremal form (Stokes waves) with crests forming an angle of 120◦ or standing
waves also forming singular crests. These singular scenarios are the subject of future
research.

5. The effect of surface tension
When adding surface tension, (2.35) has to be replaced by

∂Γ

∂t
+ μΓs =

1

We
θss − Γ ws · t − 2Aρ

[(
∂w

∂t
+ μws

)
· t+

1

4
Γ Γs +

1

Fr2
ys

]
, (5.1)

where We and Fr are the Weber and Froude numbers, respectively (see the deduction
after (2.22)). The new term θss/We represents a singular perturbation to (2.35). When
the Moore-type singularities develop in the solutions to (2.35) at some time t0 and
space point s0, the new term acts as a regularizer and a boundary layer in space and
time develops in the neighbourhood of (s0, t0). This analysis was carried out by de
la Hoz et al. (2008) for the particular case of vortex sheets, Aρ =0. They found the
precise estimate of the size of the arm of the nascent spiral, as O(We−1), as well as
the velocity with which it develops. Since the analysis for all |Aρ | < 1 is essentially
the same, we do not reproduce it here.

In the particular case Aρ = 1, the water-wave problem, the effect of surface tension
is known to be different. As we have seen above, a spiral develops already in the case
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We = ∞, and the role of surface tension is to generate a special form of capillary waves,
called Crapper waves (cf. Crapper 1970; Ceniceros & Hou 1999), that eventually may
lead to bubble entrainment (cf. Koga 1982). Our goal here is to provide a simple
boundary-layer analysis, similar to de la Hoz et al. (2008), leading to a quantitative
description of Crapper waves and estimate of the entrained bubbles as a function
of We.

In figure 12, we show a comparison, for t = 0.2730, between the profiles of both κ

and γ (=Γ/L) for We = 700 and We = ∞. At this time, the profiles for both values
of We are still very similar, but we can see that the minimum of κ does not decrease
for We = 700 as fast as that for We = ∞ and the maximum of κ starts to develop
an instability in the form of a small oscillation for We = 700. In figure 13, we show
the profiles of κ for later times and one can see that such instability is amplified,
convected and keeps its wavelength. Below, we shall estimate the growth rate of these
oscillations as a function of Weber number as well as their wavelength. The key
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observation to deduce from these results is the fact that the instabilities develop in
a small region (that gets smaller with increasing We) around the maximum of the
curvature and the vortex strength γ remains approximately constant (γ0  −1.5)

there. This allows us to approximate Γ  Γ0 + Γ̃ . We also introduce approximations
(3.2)–(3.4) for w, wt and ws into the equation for Γ :[

∂

∂t
+

(
Γ

2
+ μ

)
∂

∂s

]
Γ + 2

[
∂

∂t
+

(
Γ

2
+ μ

)
∂

∂s

]
w · t =

1

We
θss, (5.2)

and use the smallness of μ to deduce the linear equation[
∂

∂t
+

Γ0

2

∂

∂s

]
Γ̃ − Γ0

[
∂

∂t
+

Γ0

2

∂

∂s

]
H (θs) =

1

We
θss. (5.3)

Equation (4.2) for θ is also approximated by

∂θ

∂t
=

1

2
HΓ̃s. (5.4)

By applying the Hilbert transform of (5.4), we obtain Hθt = −Γ̃s/2. Then Γ̃s = −2Hθt

can be substituted into the s-derivative of (5.3), and we get

−2

[
∂

∂t
+

Γ0

2

∂

∂s

]2

Hθ =
1

We
θsss . (5.5)

Applying now the Hilbert transform to (5.5), we conclude with[
∂

∂t
+

Γ0

2

∂

∂s

]2

θ =
1

2We
Hθsss . (5.6)

Finally, we introduce a system of reference moving with velocity Γ0/2 by means of
the new variables

s ′ = s − Γ0

2
t, t ′ = t so that

∂

∂t ′ =
∂

∂t
+

Γ0

2

∂

∂s
.

This leads to

θt ′t ′ =
1

2We
Hθsss, (5.7)

with elementary solutions

θ(s, t) = eμt ′
cos(λs), (5.8)

provided

μ2 =
1

2We
λ3. (5.9)

Assuming that, up to multiplicative constants

μ ∼ Weα , λ ∼ Weβ, (5.10)

we obtain, from (5.9),

2α = −1 + 3β. (5.11)

The linearization process carried out above leads to consequences that match almost
exactly with our numerical observations. In figure 14, we plot the detail of the profile
of breaking waves near the crest for two different values of We. The main observation
is that the structures (capillary waves) that appear near the inflection point of the
profiles have the same structure but different length scales. In order to estimate the
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wavelength of such capillary waves, we have to estimate λ in (5.8) as a function of
We or, more specifically, the exponent β in (5.10). We have simulated the evolution
for Weber numbers between 200 and 700, and plotted in figure 15 the logarithm of
the maximum curvature versus time. We can see that a linear regime is reached for
all We < ∞ and we can estimate from it the exponent μ in (5.8) as a function of
We. In the inset of figure 15, we represent log μ as a function of We and a linear
regime with slope of approximately 0.30 appears. This implies α  0.30 in (5.10) and,
therefore, from (5.11), β  0.53. We estimated the numerical value of β by measuring
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intervals of 100, rescaled according to the power law of We deduced in the text for the
wavenumber.

the distance between two consecutive zeros of the propagating waves (i.e. π/λ) for
different We. In the inset of figure 15, we represent log λ versus We and we can see a
linear regime with slope 0.56, very close to the value β  0.53. This estimated accuracy
is even more evident in figure 16, where we represent the propagating oscillations for
the curvature at a given time, rescaled by the maximum curvature and as a function
of a space variable rescaled with We0.56. As we can see, the profiles, for We between
200 and 700, rescaled in this way and superposed match almost exactly.

The conclusion of our study on the effects of surface tension in breaking waves
is that Crapper waves are created in the neighbourhood of the point of maximum
curvature (located at the lower part of the crest) and propagated with velocity Γ0/2,
together with the crest. These waves have wavelength of size O(We−0.56). Their
amplitude grows exponentially and this eventually leads to the entrainment of a
bubble into the liquid phase. This bubble is also approximately of size O(We−0.56).

In the limiting case Aρ = −1, that is the Rayleigh–Taylor instability, no finite-time
singularities for We = ∞ have ever been found. Arguments based on the analysis of
singularities for the problem defined in the spatial complex plane and the impossibility
of collapse of such singularities when approaching the physical space support the
non-existence of real singularities and the formation, instead, of spikes (Tanveer 1991,
1993). In fact, it was also found numerically by Clavin et al. (2005) that the interface
develops spikes of the heavy fluid entraining the zero-density fluid. These spikes travel
with velocity  t/F r2 for t � 1 (i.e. like in free falling), the curvature at the tip of the
spike grows with time and is O(t3) for t � 1. The tip itself evolves in a self-similar
manner: if we fix a system of coordinates (x, y) at the tip, with y being the coordinate
in the direction of the spike, then x = O(t−1) and y = O(t) or, in other words, we can
write the tip as y = tf (xt) with f (η) a universal function.

The effect of surface tension, in this case, is to limit the growth of the curvature and
keep the tip’s curvature below a maximum value that we estimated numerically to be
 O(We0.23). We show in figure 17(a) the evolution of the tip’s curvature (which is
also the maximum curvature) as a function of time for various We, together with the
maximum curvature reached during the evolution as a function of We and a fit to the
power-law We0.23. In figure 17(b), we superpose the profiles near the tip for We = 50
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Figure 17. (a) Evolution of the maximum curvature with time for various We. In the inset,
the maximum curvature reached during the evolution as a function of We, together with a fit
to a power law. (b) Superposed interface profiles at various times for We = 50 and We = 150.

and We = 150. For a given We, the tip tends to converge towards a blob of constant
size and is connected to the neck of thickness O(t−1) (the thickness obtained in the
theory for We = ∞). The shape and size of the blob depend on We and, since the tip’s
curvature is  O(We0.23), the blob’s radius should be O(We−0.23). Hence, the effect of
surface tension on the Rayleigh–Taylor instability is to produce a rounded blob at the
end of the free-falling spike and connected to it by a neck of thickness O(t−1). The
rigorous analysis of these numerical observations and the study of the blob’s shape
as a function of We are interesting problems that deserve further investigation.

6. Conclusions
In this article, we have studied the formation (or not) of singularities in various

classical problems involving the evolution of the interface between two inviscid and
irrotational fluids with different densities. The problem has been considered both with
and without surface tension.

Without surface tension and depending on the Atwood ratio Aρ , we have found
singularities developing in finite time when |Aρ | < 1. These are curvature singularities,
but with a degree of differentiability that changes as a function of |Aρ |. Explicit
expressions for the singularities in terms of similarity variables have been obtained;
they form a two-parameter family with the classical Moore singularity as a particular
case when Aρ = 0. The limit Aρ = 1, corresponding to classical water waves, is clearly
singular. Moore-type singularities cannot take place in this limit and, therefore,
solutions can be continued for longer times. Nevertheless, at some later time, the
surface revolves over itself and curvature grows very fast, indicating the possible
formation of a new kind of singularity. We have described a mechanism for the
formation of such a singularity, consisting in the development of a double-armed
logarithmic spiral in a self-similar manner, and provided numerical evidence indicating
that this might indeed be the kind of singularity that develops in water waves. In
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the limit Aρ = −1, no singularities have been found. Instead, we find the growth of a
spike, a fact already reported in the literature.

When finite surface tension is included, the Moore singularities are regularized
(although a different kind of singularity in the form of self-intersection of the interface
may develop later on) and, depending on Aρ , the effect of surface tension is the
appearance of structures in the form of capillary waves, bubbles or blobs. When
writing the equations in terms of Weber number, the typical length and time scales
for the development of such structures can be estimated in the form of power laws
of We. For this analysis, knowledge on the form of the singularities or spikes in
the limit We → ∞ is crucial. The scaling laws have also been verified numerically.
The generation of bubbles and estimation of their typical size may be relevant in
measurements of gas transfer in breaking waves that have recently been carried out
(Tsoukala & Moutzouris 2008).

Various other effects and their impact in singularity formation, besides surface
tension, deserve future exploration, in particular, effects of surface tension gradients
(due to the presence of surfactants, for instance; Joo, Messiter & Schultz 1991),
weak dissipative effects due to finite fluid viscosity (Wang & Baker 2009) or wave
interactions due to the presence of solid walls.
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